TEST-DRIVING RISC-V VECTOR HARDWARE FOR HPC

Joseph K. L. Lee, Maurice Jamieson, Nick Brown, Ricardo Jesus e p cC



25 May 2023 First International workshop on RISC-V for HPC 2

Outline

- EPCC RISC-V Testbed

- RISC-V Vector Extension (RVV)

- Hardware Implementation

- Software Support: Compiler Toolchain, Linux, and Libraries
- Vector Benchmarks

- Summary & Recommendations

‘epcc|



EPCC RISC-V Testbed

Aim: Provide HPC code developers and data-scientists access to
the latest RISC-V CPUs

We have many boards (64 cores):

NezhaSTU C906 (D1) 1 4

MangoPi MQ-Pro C906 (D1) 1 2 |
HiFive Unmatched U74 (FU740) 4 1 iy
StarFive VisionFive V1 U74 (JH7100) 2 3 | ‘
StarFive VisionFive V2 U74 (JH7110) 4 13

Also will have soft-cores

[=]

[=]

Also have posts about building experiences

Apply for access: http://riscv.epcc.ed.ac.uk/

Funded by EXCALIBUR H&ES



http://riscv.epcc.ed.ac.uk/

RISC-V Vector Extension (RVV)
Key feature of RISC-V: modular extensions

Vector instructions useful in HPC applications:

exploit data parallelism, increase instruction bandwidth, improve energy efficiency
Vector Extension (RVV) first proposed in 2015

Important releases:

Version 0.7 (2019): stable enough to begin developing toolchains, simulators,

Implementations
(adopted by hardware e.g. C906, Vitruvius etc.)
Version 1.0: ratified in late 2021

epcc



RISC-V Vector Extension (RVV)

Key features:
Vector length agnostic (VLA — like Arm SVE)
c.f. Vector Length Specific (VLS — like AVX, Arm NEON)

Vector length (VLEN) minimum 128 bits, up to 65,536 bits (c.f. Arm SVE max
2,048 bits)

Vector register grouping (LMUL): 1/2/4/8 registers
Fractional LMUL (not in RVV 0.7)

Also a SIMD ‘P’ extension, aimed at embedded cores, low power DSP
Not yet ratified

epcc



Vector Hardware Implementation

SiFive P270/P470/P670
SiFive X280

Andes NX27V

Andes AX45MPV

Vitruvius+

Hwacha (V4)

New Ara

Tenstorrent BOOM-ocelot
T-Head XuanTie C906/C920
T-Head XuanTie C908*

256 / 128 / dual-128

512

Configurable from 128-512
Configurable from 128-1024
16384

512

Configurable, e.g. 4096
Configurable from 128

128

Configurable 128/256

1.0

1.0

1.0

1.0

0.7.1 (update to 1.0 in future)
Custom

1.0

1.0

0.7.1

1.0

epcc



Vector Hardware

Wide range of applications:
General applications (SiFive P series)
Decoupled vector accelerator
Ara
Vitruvius+ : long vectors — 256 DP elements per register

Off-the-shelf RVV 0.7:
T-Head (Alibaba) XuanTie C906
Found in Allwinner D1 SoC

128-bit VLEN, support 8, 16, 32 bit vector elements Whtaout 1604 1151 0908 o Wi V107

Does not support 64 bit elements(*), not suitable for HPC applications e[ 2] sy cor compare
RVV 1.0? = SR

XuanTie C908 with Sipeed? II II
Softcores:

Some open source softcores: e.g. OpenC906, Tenstorrent Boom-ocelot
Requires knowledge for FPGA designs and tools

epcc



Vector Software Support: Compiler Toolchain

» Upstream GNU toolchain does not support vector extension

* rvv-next branch — limited support for RVV 1.0

* Older deleted branch rvv-0.7.1 (compiled mirror on EPCC website)

» T-Head provides modified GNU toolchain targeting C906
* GCC 8.4 — Good auto-vectorisation  (RVV 0.7)
* GCC 10.2 — Intrinsics support, poor auto-vectorisation (RVV 0.7 & 1.0)
* Mirror on EPCC website

* LLVM 15 and 16 support RVV v1.0

» Support vector length agnostic (--scalable-vectorization=0n) or vector length specific (--riscv-v-vector-bits-
min/max=N)

 Support standard extensions with minimum vector length Zvl*, and embedded processors Zve*

 Results shown in upcoming talk: Backporting RISC-V vector assembly




Vector Software Support: Linux and Perf

* RISC-V Linux distribution generally available: Debian, Ubuntu, Fedora ... G @ 0

« Sipeed Linux image for Allwinner D1 supports RVV out of the box debian ubuntu fedora

« However, bootloader is proprietary and protected, to modify Linux images must cross compile on
another host, and vendor-specific patches must be applied to buildroot

« Specific T-Head GCC compiler version must be used to ensure resulting image is RVV compatible
« Time consuming & requires specific knowledge: high barrier to entry!

» To obtain events, kernel and OpenSBI need to be patched, depend on board & vendor

» HiFive Unmatched: the Linux kernel version 5.18 supports instruction and cycle count hardware
events for perf

« Allwinner D1: official support for perf only released in Linux kernel version 6.2 on 19 Feb 2023,
almost two years after the hardware was made available

» Major drawback for HPC workloads, where performance monitoring is necessary

epcc



Vector Software Support: Emulation and Libraries

 Limited physical hardware, none yet for RVV 1.0
« QEMU, Spike: supports RVV 1.0 (earlier versions support RVV 0.7.1)
* Vehave (BSC):

* Functional emulator based on QEMU

&REmMu

« Dynamically handle and emulate vector instructions
» Separate versions supporting RVV 1.0 and 0.7.1

A

» Most HPC libraries can be cross-compiled for RISC-V, but tend to have limited vectorisation
optimisation

« OpenBLAS optimised for RVV 0.7.1, requires specific compiler from T-Head (v2.6.0 toolchain)

« Effort within community to optimise libraries (e.g. FFTW)

* Likely see significantly increased support within the next year

epcc



Vector Benchmarks

Processor
Clock Speed
Cores
Cache

Memory
ISA
Vector width

. Systems

XuanTie C906
1.0 GHz
1

32 KB I-cache +
32 KB D-cache

512MB DDR3
RV64GC+V0.7
128 bit

SiFive U74
1.5 GHz
4

32 KB I-cache + 32
KB D-cache + 2MB L2

8GB DDR4
RV64GC
N/A

Fujitsu A64FX
1.8 GHz
48

64 KB |-cache +
64KB D-cache,
8 MB shared L2 per 12 cores

32GB HBM?2
ARMv8.2 with SVE
Dual 128-bit (NEON)/ FUjfrsu

Dual 512-bit (SVE) AGLEX

epcc



Vector Benchmark

Only on single core
Single precision

For A64FX, use NEON only
128-bit vector length, same as D1

T-Head compiler generates VLS code (fixed 128-bit)

AB64FX is designed for HPC vs RISC-V cores for embedded / single-board computer:

Still interesting to compare

epcc



Vector Benchmark
Benchmark: RAJA Performance Suite (https://github.com/LLNL/RAJAPerf)

ALGORITHM
APPS
BASIC

LCALS (Livermore Compiler Analysis Loop Suite)

POLYBENCH
STREAM

RV-GCCS8.4-scalar
RV-GCC8.4-vector

ARM-GCC11.2-scalar

ARM-GCC11.2-vector

XuanTie GCC8.4
XuanTie GCC8.4

GCC11.2

GCC11.2

N/A
128-bit

N/A

128-bit

-O3 -march=rv64gc -ffastmath
-O3 -march=rv64gcv -ffastmath

-O3 —ffastmath -mcpu=a64fx -
march=armv8.2-a+nosimd+nosve

-O3 —ffastmath -mcpu=a64fx -
march=armv8.2-a+simd+nosve

epcc



Vector Benchmark: Results
For RV-GCCB8.4-vector, out of 64 kernels:
23 vectorised and vector loop executed
7 vectorised but vector loop not executed
34 only scalar
Clang vectorises more kernel than GCC (See next talk)

Vectorised kernel sensitive to loop ranges, scalar branch taken often

epcc



Vector Benchmark: Results

Summary:
Purple: D1-vector / D1-scalar
RVV achieves higher bandwidth for stream kernels
RVV accelerates Linear Algebra kernels:
84% faster for AXPY
53% faster for GEMM...
Speedup generally not as significant as NEON on A64FX

AB64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector IS
25 VF2 RV-GCCS8.4-scalar

2

1.5

0.5

1.5 |

0.5

RISC-V timing normalised against D1 scalar

Lower is better

A64FX vector timing normalised against A64FX scalar

" A64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector .
VF2 RV-GCC8.4-scalar

" A64FX ARM-GCCI11.2-vector

D1 RV-GCCB8.4-vector .
VF2 RV-GCC8.4-scalar




Vector Benchmark: Results

Allwinner D1 vs StarFive JH7110 (VF2) (Green):

VF2 higher frequency, GEMM 6x faster than D1 scalar, 4x D1 w/ vector
But with vectorisation D1 streaming is faster than VF2, even though VF2

has higher theoretical bandwidth

AXPY on D1 w/ vector 77% faster than VF2 scalar

D1 considerably cheaper than VF2, impressive

But only testing 1 out of 4 cores in VF2

AB4FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector IS
25 ¢ VF2 RV-GCCS8.4-scalar i
2 L
15
1 L
05 |
0

RISC-V timing normalised against D1 scalar
A64FX vector timing normalised against A64FX scalar
Lower is better

2

AB64FX ARM-GCC11.2-vector
D1 RV-GCC8.4-vector .
VF2 RV-GCC8.4-scalar
1.5

B . ‘ I .
0 . ‘ ‘ ‘

" A64FX ARM-GCCI11.2-vector
D1 RV-GCCB8.4-vector .
VF2 RV-GCC8.4-scalar

|

1.5 |

S
$ S

ﬂ§‘ %

14

i l l I L
0 > 4 Q >
< > Q
& - & &

3

Kernels



Summary

D1 gains significant performance advantage with RISC-V Vector extension

Mismatch between RVV version in available tooling (e.g. GCC and Clang) and hardware makes running
and testing RVV codes difficult

Challenges due to immaturity will hopefully be solved with standardisation of tooling and RVV 1.0 compliant
hardware

RVV provides a strong foundation for leveraging RISC-V for high performance workloads

Improvement potentials to further increase performance:
improved auto-vectorisation in LLVM
increased VLEN in future CPUs

Would be helpful if support present for both RVV 0.7 and 1.0 in mainstream GCC and Clang

epcc



Recommendations

We recommend using the T-Head GCC 8.4 auto-vectorisation and *not* using the T-Head RVV
v0.7 intrinsic API

This ensures that codes can simply be recompiled, without modification, to target RVV v1.0
compatible hardware

We also recommend building RVV-enabled Linux images with a patched mainstream buildroot
using the T-Head GCC 8.4 compiler, as support for the Allwinner D1 has recently been added

epcc



Thank you!

Next part: Backporting RISC-V Vector assembly

EPCC RISC-V Testbed: http://riscv.epcc.ed.ac.uk/

[m] g2 [m]

[=]

epcc


http://riscv.epcc.ed.ac.uk/

Additional slides: 1

RAJAPerf kernels vectorised by RV-GCC8.4-vector

Algorithm MEMCPY, MEMSET, REDUCE_SUM

Apps ENERGY, FIR, PRESSURE

Basic AXPY, AXPY_ATOMIC, REDUCE3_INT

Lcals GEN_LIN_RECUR

Polybench 2MM, 3MM, ATAX, FDTD 2D, GEMM, GEMVER, GESUMMV, MVT

Stream ADD, COPY, DOT, MUL, TRIAD

Lcals FIRST_SUM, FIRST_DIFF, HYDRO_ 1D, HYDRO_2D, TRIDIAG_ELIM

Polybench JACOBI_1D, JACOBI_2D

Algorithm SCAN, SORT, SORTPAIRS

Apps CONVECTION3DPA, DEL_DOT_VEC_2D, DIFFUSION3DPA, HALOEXCHANGE, HALOEXCHANGE_FUSED, LTIMES,

LTIMES_NOVIEW, MASS3DPA, NODAL_ACCUMULATION_3D, VOL3D

Basic IF_QUAD, INDEXLIST, INDEXLIST_3LOOP, INIT_VIEWI1D, INIT_VIEW1D_OFFSET, INIT3, MAT_MAT_SHARED,
MULADDSUB, NESTED_INIT, PI_ATOMIC, PI_REDUCE, REDUCE_STRUCT, TRAP_INT

Lcals DIFF_PREDICT, EOS, FIRST_MIN, INT_PREDICT, PLANCKIAN

Polybench ADI, FLOYD WARSHALL, HEAT_3D



	Slide 1: Test-driving RISC-V Vector hardware for HPC
	Slide 2: Outline
	Slide 3: EPCC RISC-V Testbed
	Slide 4: RISC-V Vector Extension (RVV)
	Slide 5: RISC-V Vector Extension (RVV)
	Slide 6: Vector Hardware Implementation
	Slide 7: Vector Hardware
	Slide 8: Vector Software Support: Compiler Toolchain
	Slide 9: Vector Software Support: Linux and Perf
	Slide 10: Vector Software Support: Emulation and Libraries
	Slide 11: Vector Benchmarks: Systems
	Slide 12: Vector Benchmark
	Slide 13: Vector Benchmark
	Slide 14: Vector Benchmark: Results
	Slide 15: Vector Benchmark: Results
	Slide 16: Vector Benchmark: Results
	Slide 17: Summary
	Slide 18: Recommendations
	Slide 19: Thank you!
	Slide 20: Additional slides: 1

